

International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Special Issue-11 pp. 4118-4130 Journal homepage: http://www.ijcmas.com

Original Research Article

Studies on Nutritional Quality of Garden Cress Seed Biscuits

V. G. Gaikwad*, U. D. Chavan, S. N. Godase and P. M. Kotecha

Department of Food Science and Technology, Mahatma Phule Krishi Vidyapeeth, Rahuri *Corresponding author

ABSTRACT

The present research work was carried out to explore the possibility of utilization of underutilized but highly nutrient rich garden cress seed in biscuits. Preliminary experiments were carried out to find out optimum level of garden cress seed flour with maidaand garden cress seed flour with wheat flour for the preparation of quality biscuits. The quality biscuits were prepared from 90% maida and 10% garden cress seed flour (BMGCF₁₀) and 90% wheat flour and 10% garden cress seed flour (BWGCF₁₀). The selected treatments were packed in LDPE and PP and stored at ambient (30 \pm 4 0 C) for 90 days to study their storage feasibility. Chemical composition of the fresh biscuits prepared from 90% maida and 10% garden cress seed flour (BMGCF₁₀) that showed moisture content was 4.20%, protein 12.76%, crude fat 27.65%, crude fiber 1.44%, carbohydrates 53.95%, calcium 51.86mg/100 g,iron 3.27 mg/ 100 g and phosphorus 170.38 mg/100g.and chemical composition of fresh biscuits prepared from 90 % wheat flour and 10 % garden cress seed flour (BWGCF₁₀) that shows moisture content was 4.12 %, protein 13.60 %, crude fat 26.86 %, crude fiber 2.58 %, carbohydrates 52.84%, calcium 73.62 mg/100 g, iron 5.27 mg/100 g and phosphorus 380.87 mg/100g. The sensory evaluation of biscuits was carried out regularly at an interval of one month for 3 month during storage. The results on overall acceptability score of biscuits are influenced by storage. The results indicated that score for overall acceptability of biscuits decreased for control from 8.20 to 7.95 in LDPE and from 7.84 to 7.43 in PP as storage period get increased. For BMGCF₁₀ treatment score decreases from 8.23 to 8.16in LDPE and 7.83to 7.72 in PP was observed for 90 days of storage. The results indicated that score for overall acceptability of biscuits decreased for control from 8.00 to 7.86 in LDPE and from 7.78 to 7.40 in PP as storage period get increased. For BWGCF₁₀ treatment score decreases from 8.13 to 8.11 in LDPE and 7.67 to 7.6 in PP was observed for 90 days of storage. Storage study of biscuits showed that the biscuits prepared by incorporation of garden cress seed flour, maida and wheat flour can be stored up to 3 month in LDPE with minimum losses in sensory, nutritional and textural characteristics than PP. There was no significant difference in protein, crude fiber, calcium and iron content with advancement of storage period during 3 month. The biscuits were found to be acceptable up to3month storage at ambient temperature. The total cost of production of biscuits prepared from maida and garden cress seed flour (BMGCF₁₀) for 1 kg was Rs. 137.35/-and total cost of production of biscuits prepared from wheat flour and garden cress seed flour (BWGCF₁₀) for 1 kg was Rs.135.12/.

Keywords

Garden cress seed, Biscuits, Nutritional value, Organoleptic properties

Introduction

The demand for processed foods is ever increasing due to the technological, industrial and economic advances of the developing societies of the world including India. The bakery industry has been steadily growing in the country, being the largest among the processed food industries. The two major bakery industries namely bread and biscuits account for almost 82 per cent of the total bakery products. The annual production of bakery products is estimated to be more than 3.0 million tonnes (www.biscuitfederation.org). India recognized to be the second largest producer of biscuits next only to the United States of America with annual production of which was 7.40 lakh metric tonnes in 1997-98 which has escalated to 17.14 lakh metric tonnes in 2005-2009 (Agrawal, 1990). products the bakery biscuits Among command wide popularity in rural as well as urban areas among people of all age groups (Agrawal, 1990). The production of biscuits in the country, both in the organized and unorganized sectors, is estimated to be around 11 million tones.

The biscuits formula consists of refined flour, hydrogenated fat, sugar and other additives. It is well documented that most of the ingredients used in commercial biscuits lack important nutrients. The refined flour lacks in dietary fiber and micronutrients which are important health promoting components. The hydrogenated fat comprises of trans-fats which have proven to be harmful to human health. Recognizing the negative health effects of transfat many countries have banned the trans-fats in foods and have recommended zero tolerance to trans-fats in foods for infants and other vulnerable groups. Nutrition labeling to indicate the trans-fats content is made mandatory in countries.

There is a growing awareness among the consumers regarding the constituents that affect health both positively and negatively. The number of such health conscious consumers is fast increasing and so is the health food industry. New foods with new health claims are flooding the market to meet the diverse demands of consumers. However, still there is ample scope to enhance the nutritional value of cookies using quantitatively qualitatively and nutritious food ingredients. Garden cress seed is an important underutilized oil seed, also called as haliv, aliv, halim. Garden cress seed are rich in vitamins A,E and C, specially niacin, B6 and folic acid, as well as the mineral such as calcium, iron. Regular consumption of garden cress seed is very beneficial for postmenopausal women suffering from signs of cardiovascular disease, like high blood pressure and high cholesterol level.

Additionally, it can blend with most of traditional and novel foods without imparting any flavours of its own. Hence, in the present study garden cress seed was chosen to enhance the nutrient composition of cookies and biscuits in terms of dietary fiber and other nutrients

Materials and Methods

Ingredients

The major ingredients for the preparation of products were garden cress seed procured from local market. The maida was procured from local market.

Packaging material

The packaging material *viz.*, LDPE and PP bags were procured from local market and used for packaging of cookies and biscuits for storage study.

Treatment details

The garden cress seed biscuits were prepared by using different levels of garden cress seed flour with maida and garden cress seed with wheat flour as shown below:

Procedure for preparation of garden cress seed flour

The dried garden cress seed were grinded in to flour and passed through sieve of 60 mesh to get uniform flour.

Preparation of garden cress seed flour biscuits

The biscuits were prepared using standard levels of ingredients as per the traditional creaming process.

Physical characteristics of raw material

The raw material garden cress seed were analyzed for different physical characteristics like thousand kernel weight, bulk density and colour.

Chemical properties of raw materials, biscuitss

Chemical constituents like moisture, fat, protein, carbohydrate, crude fiber and minerals like calcium, phosphorous and iron content of raw material, cookies were determined as per the standard procedure.

Physico-chemical analysis of raw material, biscuits

The method described in A.O.A.C. (2000) for determining moisture was used. The protein content of cookies and biscuits was estimated by determining total nitrogen content using standard Micro-Kjeldhal method and fat content of the cookies and biscuits estimated by the soxhlet method A.A.C.C (2000). The

crude fiber content in the products was estimated by A.A.A.C. (2000).The carbohydrate content in the selected cookies were obtained by subtracting from 100, the sum of values of moisture, protein and fat of content per 100 g the sample (Raghuramulu, et al., 1993). Calcium, phosphorous and iron were analyzed using absorption spectrometry (AAS). atomic These methods give a good precision and accuracy (Ojeka and Ayodele 1995.)

Packaging and storage of garden cress seed biscuits

The selected treatments of garden cress seed biscuits were packed in LDPE and PP and stored at ambient (30±4°C)for 3 months. The samples were drawn at an interval of 1 month and evaluated for chemical and sensory quality.

Sensory evaluation of biscuits

Sensory evaluation of garden cress seed biscuits was carried on 9 point hedonic scale. The average scores of the ten judges for different quality characteristics *viz.* colour and appearance, flavour, texture, taste and overall acceptability were recorded.

Statistical analysis

All experiments were carried out by using Factorial Completely Randomized Design (FCRD). The results obtained in the present investigation were analyzed for the statistical significance according to the procedure given by Rangaswamy (2010).

Results and Discussion

Physical characteristics of raw materials

The results obtained for physical characteristics of garden cress seed are presented below:

The seed colour was raddish brown. Bulk density of seeds was found to be1182 kg/m³. The variations in density of garden cress seed may be due to random harvesting of garden cress seed at different maturity stages. This factor is important because it determines the capacity of storage, packaging and transport systems (Muragod, 2019). Seed colour of wheat is pale yellow. bulk density 772.0kg/m³.

The weight of 1000 grains is 1.96g. The shape of seed is oval. The true density of garden cress seed and wheat was to be 729.74 and 1390 kg/m³, respectively. The porosity was 36 and 31.58 %, respectively. The angles of repose for garden cress seed and wheat were found to be 25.17° and 27°, respectively (Chnadrakumar 2018).

Chemical characters of raw materials

The results obtained for chemical characteristics of garden cress seed flour, maida and wheat are presented here:

Chemical characters of various raw materials are comparable with findings reported by other scientist Tosco, (2004). These values are also comparable with Gopalan, *et al.*, (2006). Similar conclusions have been drawn by Bushway, *et al.*, (1981), Mayela, *et al.*, (2007) and Salazar, *et al.*, (2011).

Sensory evaluations of fresh garden cress seed biscuits

The organoleptic evaluation of biscuits prepared by different combination of garden cress seed flour with maida and garden cress seed flour with wheat flour were carried out. Garden cress seed biscuits were prepared and presented to panel of ten judge for assessing the quality and acceptability of product. Organoleptic evaluation of biscuits was carried out using a 9 point hedonic scale of

sensory characteristics such as colour, flavour texture, taste and overall acceptability.

The score obtained for sensory evaluation for garden cress seed flour with maida and garden cress seed flour with wheat flour biscuits are shown in Table 4 and Table 5. Garden cress seed and maida biscuits (10 garden cress seed flour: 90 maida) and garden cress seed and wheat flour biscuits (10 garden cress seed flour: 90 wheat flour) were found the best for preparation of garden cress seed biscuits of good quality and stored at ambient temperature (30 \pm 4°C) for 3 month.

Organoleptic quality parameters of a product assume pivotal role in anticipating the consumer response to the product (Rey 2006). Colour and appearance uniformity are vital components of visual quality of fresh as well as processed foods and play a major role in consumer choice (Alistair 2005). Flavour being a combination of taste, smell and mouth feel, has multifaceted impact on sensory quality of a product (Amerine, *et al.*, 1980).

Overall acceptability of product is a function of various factors including colour and appearance, flavour, texture and taste. Amongst all samples for both cookies containing maida90 per cent and garden cress seed 10 per cent and 90 per cent wheat flour and 10 per cent garden cress seed combination was found to be more acceptable. Singh *et al.*,(2000) reported overall acceptability of product like cookies is a function of various factors including colour and appearance, flavour, texture and taste in the soy fortified biscuits storage.

Gupta and Singh (2005) reported overall acceptability of biscuits containing colourand appearance, flavour, texture and taste which gives overall acceptance by considering above all attributes.

Table.1 Treatment details for preparation of garden cress seed biscuits

Treatments	Maida	Cress seed	Treatments	Wheat flour	Cress seed
	(%)	flour (%)		(%)	flour (%)
$BM(T_0)$	100	00	$BW(T_0)$	100	00
$BM(T_1)$	98	02	$BW(T_1)$	98	02
BM (T ₂)	96	04	BW (T ₂)	96	04
BM (T ₃)	94	06	BW (T ₃)	94	06
BM (T ₄)	92	08	BW (T ₄)	92	08
BM (T ₅)	90	10	BW (T ₅)	90	10
$BM(T_6)$	88	12	BW (T ₆)	88	12
BM (T ₇)	86	14	BW (T ₇)	86	14
BM (T ₈)	84	16	BW (T ₈)	84	16
BM (T ₉)	82	18	BW (T ₉)	82	18
BM (T ₁₀)	80	20	$BW(T_{10})$	80	20

B = biscuits, M = maida, W = wheat flour

Table.2 Physical characteristics of raw materials

Parameter	Garden cress seed	Wheat
Colour	Reddish brown	Pale yellow
Shape	Oval	-
1000 Grain Weight (g)	1.96	222
Bulk density (kg/m ³)	1182	772.0
True density (kg/m ³)	729.74	1390.5
Porosity (%)	36.00	31.58
Angle of repose	25.17	27 ⁰

Table.3 Chemical characters of raw materials

Chemical constituent	Maida	Wheat	Garden cress seed
Moisture (%)	13.3	12.6	4.13
Protein (%)	12.1	11.2	24.14
Fat (%)	0.9	1.7	25.85
Crude fiber (%)	0.3	1.8	8.25
Carbohydrates (%)	73.9	70.4	33.59
Calcium (mg/100g)	23.0	48.0	313.31
Phosphorus	121.0	355.0	615.40
Iron (mg/100g)	2.7	4.9	7.96

^{*}Each value is the average of three determinations

Table.4 Sensory evaluation of fresh biscuits fortified with garden cress seed flour and maida

Sample	Sensory attributes*							
_	Colour and appearance	Flavour	Texture	Taste	Overall Acceptability			
$BMGCF_0$	8.1	8.0	8.1	8.1	8.0	3		
$BMGCF_2$	7.9	7.8	7.8	7.7	7.8	5		
$BMGCF_4$	8.0	7.9	7.9	7.9	7.9	4		
BMGCF ₆	8.1	8.0	8.1	8.0	8.0	3		
BMGCF ₈	8.3	8.1	8.2	8.1	8.1	2		
BMGCF ₁₀	8.7	8.2	8.6	8.5	8.5	1		
BMGCF ₁₂	7.3	7.2	7.7	7.4	7.4	6		
BMGCF ₁₄	7.2	6.8	7.5	7.3	7.2	7		
BMGCF ₁₆	6.5	6.4	7.3	7.2	6.8	8		
BMGCF ₁₈	6.2	6.2	6.5	6.5	6.3	9		
BMGCF ₂₀	6.1	6.2	6.4	6.3	6.2	10		
Mean	7.33	7.22	7.43	7.45	7.40	-		
S.E.±	0.10	0.23	0.07	0.14	0.13	-		
C.D at 5%	0.30	0.70	0.22	0.42	0.40	-		

*Maximum score out of 9 point hedonic scale. all results are mean value of ten replications. where as, BMGCF₀= 100 % maida: 0 % garden cress seed flour; BMGCF₂= 98 % maida: 2 % garden cress seed flour $BMGCF_4 = 96 \%$ maida: 4 % garden cress seed flour; $BMGCF_6 = 94 \%$ maida: 6 % garden cress seed flour BMGCF₈ = 92 % maida: 8 % garden cress seed flour; BMGCF₁₀ = 90 % maida: 10 % garden cress seed flour

 $BMGCF_{12} = 88 \%$ maida: 12 % garden cress seed flour; $BMGCF_{14} = 86 \%$ maida: 14 % garden cress seed flour $BMGCF_{16} = 84 \%$ maida: 16 % garden cress seed flour; $BMGCF_{18} = 82 \%$ maida: 18 % garden cress seed flour

BMGCF₂₀ = 80 % maida: 20 % garden cress seed flour

Table.5 Sensory evaluation of fresh biscuits fortified with garden cress seed flour and wheat flour

Sample	Sensory attributes*							
	Colour and appearance	Flavour	Texture	Taste	Overall Acceptability			
$BWGCF_0$	7.9	7.7	7.4	7.3	7.5	6		
BWGCF ₂	8.0	7.6	7.6	7.5	7.6	5		
BWGCF ₄	8.1	7.7	7.7	7.7	7.8	4		
BWGCF ₆	8.1	7.8	7.8	7.9	7.9	3		
BWGCF ₈	8.2	7.9	8.1	8.4	8.1	2		
BWGCF ₁₀	8.6	8.4	8.3	8.6	8.4	1		
BWGCF ₁₂	7.4	7.4	7.6	7.4	7.4	7		
BWGCF ₁₄	6.5	6.8	6.9	6.7	6.7	8		
BWGCF ₁₆	5.9	6.8	6.6	6.5	6.4	9		
BWGCF ₁₈	5.9	6.3	6.2	5.9	6.2	10		
BWGCF ₂₀	5.8	5.8	6.0	5.8	6.0	11		
Mean	6.85	7.28	7.25	7.18	7.20			
S.E.±	0.12	0.11	0.07	0.14	0.11	-		
C.D at 5%	0.37	0.34	0.21	0.43	0.34	-		

*Maximum score out of 9 point hedonic scale. All results are mean value of ten replications. where as,

BWGCF₀ = 100 % wheat flour: 0 % garden cress seed flour; BWGCF₂ = 98 % wheat flour: 2 % garden cress seed flour

BWGCF₄ = 96 % wheat flour: 4 % garden cress seed flour; BWGCF₆ = 94 % wheat flour: 6 % garden cress seed flour

BWGCF₈ = 92 % wheat flour: 8 % garden cress seed flour; BWGCF₁₀ = 90% wheat flour: 10 % garden cress seed flour

 $BWGCF_{12} = 88 \%$ wheat flour: 12 % garden cress seed flour; $BWGCF_{14} = 86 \%$ wheat flour: 14 % garden cress seed flour

BWGCF₁₆ = 84 % wheat flour: 16 % garden cress seed flour; BWGCF₁₈ = 82 % wheat flour: 18 % garden cress seed flour

BWGCF₂₀ = 80 % wheat flour: 20 % garden cress seed flour

Table.6 Nutritional changes in garden cress seed flour and maida biscuits during storage at ambient temperature

Paramet	Moistu	Protei	Fat	Crude fiber	Carbohydr	Calciu	Iron	Phospho		
ers	re	n	(%)	(%)	ate	m	(mg/10	rus		
	(%)	(%)			(%)	(mg/10	0g)	(mg/100g		
						0g))		
Treatment										
	4.24	11.71	25.71	0.22	58.12	22.64	2.60	120.14		
$BMGCF_0$										
BMGCF ₁	4.20	12.68	27.67	1.44	54.01	51.86	3.25	170.40		
0										
SE±	0.007	0.007	0.007	0.006	0.007	0.007	0.007	0.007		
CD @	0.021	0.021	0.021	0.019	0.021	0.021	0.021	0.021		
5%										
				Packaging mat						
P_0	4.22	12.63	27.40	1.43	54.32	51.88	3.22	170.23		
P ₁	4.24	12.61	27.37	1.41	53.29	51.85	3.20	170.17		
SE±	0.249	0.006	0.005	0.006	0.006	0.007	0.005	0.006		
CD @	NS	0.018	0.014	0.020	0.017	0.021	0.016	0.019		
5%				~ .	_					
	4.22	12.60	27.61	Storage peri		71.0 0	2.25	170.00		
C_1	4.22	12.69	27.61	1.46	54.02	51.29	3.25	170.32		
C_2	4.24	12.66	27.68	1.45	53.97	51.27	3.23	170.21		
C_3	4.26	12.63	27.65	1.41	53.80	51.24	3.21	170.19		
SE±	0.427	0.007	0.006	0.007	0.007	0.009	0.009	0.007		
CD @	NS	0.021	0.017	0.020	0.021	0.026	0.019	0.023		
5%				-						
		44.55	27.71	Interaction		22.74	2.52	12015		
$T_0P_0C_1$	4.24	11.77	25.74	0.24	58.05	22.74	2.63	120.16		
$T_0P_0C_2$	4.25	11.74	25.73	0.23	58.01	22.72	2.61	120.14		
$T_0P_0C_3$	4.27	11.73	25.71	0.21	57.98	22.71	2.59	120.13		
$T_0P_1C_1$	4.29	11.74	25.72	0.23	58.02	22.69	2.61	120.11		
$T_0P_1C_2$	4.29	11.70	25.68	0.23	57.89	22.67	2.58	120.10		
$T_0P_1C_3$	4.31	11.69	25.65	0.20	57.84	22.66	2.56	120.09		
$T_1P_0C_1$	4.15	12.74	27.55	1.41	54.21	51.84	3.26	170.35		
$T_1P_0C_2$	4.17	12.71	27.52	1.39	54.18	51.82	3.25	170.31		
$T_1P_0C_3$	4.19	12.67	27.49	1.38	54.15	51.79	3.23	170.30		
$T_1P_1C_1$	4.21	12.72	27.48	1.37	54.20	51.78	3.21	170.32		
$T_1P_1C_2$	4.22	12.68	27.50	1.36	54.15	51.77	3.23	170.29		
$T_1P_1C_3$	4.23	12.64	27.47	1.34	54.13	51.76	3.20	170.27		
SE±	0.024	0.015	0.012	0.015	0.014	0.017	0.013	0.016		
CD @	0.074	0.042	0.034	0.043	NS	0.053	0.037	0.046		
5%										

^{*}Each value represents the average of three replications.

Where, Control= 100% maida, BMGCF₁₀= 90% maida and 10% garden cress seed flour

 P_0 =LDPE, P_1 =PP, C_1 =30 days, C_2 =60 days, C_3 =90 days

Table.7 Nutritional changes in garden cress seed flour and wheat flour biscuits during storage at ambient temperature

Paramet ers	Moistu re	Protei n	Fat (%)	Crude fiber (%)	Carbohydr ate	Calciu m	Iron (mg/10	Phospho rus			
	(%)	(%)			(%)	(mg/10 0g)	0 g)	(mg/100g			
Treatment											
	4.19	12.82	26.35	1.81	54.83	43.25	4.41	320.50			
$BWGCF_0$											
BWGCF ₁	4.13	13.42	26.84	2.52	53.09	73.50	5.21	380.85			
0											
SE±	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007			
CD @	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021			
5%											
	T	T	T	Packaging mat			T =				
P_0	4.12	13.39	26.66	2.55	53.38	73.31	5.22	380.57			
P ₁	4.13	13.35	26.63	2.51	53.28	73.29	5.20	380.41			
SE±	0.009	0.005	0.005	0.006	0.007	0.009	0.007	0.501			
CD @	0.026	0.016	0.016	0.016	0.020	0.026	0.020	NS			
5%				<u> </u>	_						
	4.12	12.22	26.04	Storage peri		72.55	5.25	200.60			
C_1	4.13	13.23	26.84	2.54	53.26	73.55	5.25	380.69			
C_2	4.15	13.21	26.82	2.53 2.52	53.21	73.45	5.23	380.65			
C ₃	4.17	13.19	26.81		53.19	73.43	5.21	380.62			
SE±	0.010	0.006	0.007	0.007	0.007	0.007	0.007	0.007			
CD @ 5%	0.032	0.019	0.020	0.020	0.023	0.031	0.025	0.027			
370				Interaction	<u> </u>						
$T_0P_0C_1$	4.17	12.86	26.44	1.81	54.72	43.76	4.43	320.59			
$T_0P_0C_2$	4.17	12.85	26.41	1.79	54.69	43.73	4.40	320.57			
$T_0P_0C_3$	4.18	12.82	26.39	1.77	54.64	43.71	4.37	320.56			
$T_0P_1C_1$	4.19	12.83	26.40	1.78	54.59	43.72	4.39	320.54			
$T_0P_1C_2$	4.18	12.82	26.38	1.76	54.57	43.70	4.37	320.53			
$T_0P_1C_3$	4.22	12.80	26.37	1.73	54.45	43.69	4.35	320.52			
$T_1P_0C_1$	4.16	13.57	26.80	2.56	52.91	73.58	5.25	380.80			
$T_1P_0C_2$	4.17	13.53	26.79	2.54	52.87	73.55	5.23	380.77			
$T_1P_0C_3$	4.18	13.52	26.77	2.53	52.84	73.53	5.22	380.75			
$T_1P_1C_1$	4.19	13.54	26.78	2.51	52.89	73.56	5.23	380.78			
$T_1P_1C_2$	4.20	13.51	26.75	2.49	52.80	73.52	5.21	380.73			
$T_1P_1C_3$	4.21	13.49	26.74	2.47	52.76	73.50	5.21	380.71			
SE±	0.022	0.013	0.014	0.017	0.017	0.022	0.017	1.226			
CD @	0.064	0.040	0.038	0.045	NS	0.06	NS	NS			
5%											

^{*}Each value represents the average of three replications

Where, Control= 100% wheat flour, BWGCF₁₀= 90% wheat flour and 10% garden cress seed flour, P_0 =LDPE,

Fig.1 Flow chart for preparation of garden cress seed biscuits

Maida or wheat flour + garden cress seeds flour + sodium bicarbonate + ammonium bicarbonate mix well together

Sieve the ingredients

Mixed with creamed fat and sugar

Knead to soft dough and role for spreading

Cut with a fancy biscuit cutter

Bake at 160°c for 15-20 min

Cooling and packaging

Storage

Selection of best combination for preparation of garden cress seed fortified biscuits.

On the basis of organoleptic properties (colour and appearance, flavour, texture, taste and overall acceptability) the best combination from maida and garden cress seed and wheat flour and garden cress seed flour was90:10. For the storage study these combinations with control (100% maida) were selected and the biscuits prepared from them used for further storage study. During storage study their nutritional composition, organoleptic properties and microbial quality were analysed using standard procedures.

Nutritional value changes in garden cress seed biscuits during storage

The average values of fresh biscuits(100% maida) was moisture increased for treatment BMGCF₀ from 4.24 to 4.27 per cent in LDPE and 4.29 to 4.31 per cent in PP was observed for 90 days of the storage. The sample BMGCF₁₀ showed increase in the moisture content 4.15to 4.19 per cent in LDPE and 4.21 to 4.23 per cent in PP. Protein decreased for BMGCF₀ treatment from 11.77 to 11.73per cent in LDPE and from 11.74 to 11.69 per cent in PP was observed for 90 days of storage. The sample BMGCF₁₀ showed from 12.74 to 12.67 per cent in

LDPE and from 12.72 to 12.64 per cent in PP.fat decreased for treatment BMGCF₀ from 25.74 to 25.71 per cent in LDPE and from 25.72 to 25.65 per cent in PP was observed for 90 days of storage. The sample BMGCF₁₀ showed from 27.55 to 27.49 in LDPE and from 27.48 to 27.47 in PP. the crude fiber decreased for treatment BMGCF₀ from 0.24 to 0.21 per cent in LDPE and from 0.23 to 0.20 per cent in PP was observed for 90 days of storage. The sample BMGCF₁₀ showed crude fiber content 1.41 to 1.38 per cent in LDPE and from 1.37 to 1.34 per cent in PP. carbohydrates decreased for BMGCF₀ from 58.05 to 57.98 per cent LDPE and from 58.02 to 57.84 per cent in PP was observed for 90 days of storage. The sample BMGCF₁₀ showed carbohydrate content 52.91 to 52.84 % in LDPE and from 52.89 to 52.76 % in PP. calcium decreased for treatment BMGCF₀ from 22.74 to 22.71 mg/100g in LDPE and from 22.69 to 22.66 mg/100g in PP was observed for 90 days. The sample BMGCF₁₀ showed from 51.84 to 51.82 mg/100g in LDPE and from 51.78 to 51.76 mg/100g in PP. iron decreased for treatment BMGCF₀ from 2.63 to 2.59 mg/100g in LDPE and 2.61 to 2.56 mg/100g in PP was observed for 90 days. The sample BMGCF₁₀ showed from 3.26 to 3.23 mg/100g in LDPE and from 3.21 to 3.20 mg/100g in PP. phosphorus decreased for treatment BMGCF₀ from 120.16 to 120.13 mg/100g in LDPE and 120.11 to 120.09 mg/100g in PP was observed for 90 days. The sample BMGCF₁₀ showed from 170.35 to 170.30 mg/100g in LDPE and from 170.32 to 170.27 mg/100g in PP.Protein, fat, crude carbohydrate, calcium, fiber, iron phosphorus decreased in ambient temperature during storage period of 3 month. The decrease in moisture, protein, carbohydrate, crude fiber, calcium and iron was more rapid in the samples stored in PP than LDPE during the storage period. The average value of fresh biscuits (100% wheat flour) moisture increased for treatment BWGCF₀ from 4.17 to 4.18 per cent in LDPE and 4.19 to 4.22 per cent in PP was observed for 90 days of the storage. The sample BWGCF₁₀ showed increase in the moisture content 4.16 to 4.18 per cent in LDPE and 4.19 to 4.21 per cent in PP. Protein decreased for BWGCF₀ treatment from 12.86 to 12.82 per cent in LDPE and from 12.83 to 12.80 per cent in PP was observed for 90 days of storage. The sample BWGCF₁₀ showed from 13.57 to 13.52 per cent in LDPE and from 13.54 to 13.49 per cent in PP. fat decreased for treatment BWGCF₀ from 26.44 to 26.39 per cent in LDPE and from 26.40 to 26.37 per cent in PP was observed for 90 days of storage. The sample BWGCF₁₀ showed from 26.80 to 26.77 in LDPE and from 26.78 to 26.74 in PP. crude fiber decreased for treatment BWGCF₀ from 1.81 to 1.77 per cent in LDPE and from 1.78 to 1.73 per cent in PP was observed for 90 days of storage. The sample BWGCF₁₀ showed crude fibre content 2.56 to 2.53 per cent in LDPE and from 2.51 to 2.47 per cent in PP. carbohydrates decreased for BWGCF₀ from 54.72 to 54.64 per cent LDPE and from 54.59 to 54.45 per cent in PP was observed for 90 days of storage. The sample BWGCF₁₀ showed carbohydrate content 52.91 to 52.84 per cent in LDPE and from 52.89 to 52.76 per cent in PP. calcium decreased for treatment BWGCF₀ from 43.76 to 43.71 mg/100g in LDPE and from 43.72 to 43.69 mg/100g in PP was observed for 90 days. The sample BWGCF₁₀ showed from 73.58 to 73.53 mg/100g in LDPE and from 73.56 to 73.50 mg/100g in PP. the iron decreased for treatment BWGCF₀ from 4.43 to 4.37 mg/100g in LDPE and 4.39 to 4.35 mg/100g in PP was observed for 90 days. The sample BWGCF₁₀ showed from 5.25 to 5.22 mg/100g in LDPE and from 5.23 to 5.21 mg/100g in PP. phosphorus decreased for treatment BWGCF₀ from 320.59 to 320.56 mg/100g in LDPE and 320.54 to 320.52 mg/100g in PP was observed for 90 days. The sample

BWGCF $_{10}$ showed from 380.80 to 380.75 mg/100g in LDPE and from 380.78 to 380.71 mg/100g in PP.

Mirsaeedghazi, et al., (2008) reported that increase of protein in dough causes greater consistency of dough. The interaction including physical and chemical forces among protein molecules play key role on the rheological properties (Shiau and Yeh, 2001). The increase in protein content is acceptable for better rheological characteristics.

In cookies production, addition of fat imparts tenderness making it more palatable; assist in texture improvements. External added fat during preparation of cookies have plasticizing effects reported by Mulvancey and Cohen (1997).

Sharoon, et al., (2014) reported considerable increment the moisture content in all cookies with increasing storage duration. This increase was primarily due to packaging material (polythene bags). Sujitha and Thirumani (2014) also reported increase in moisture content from 3.6-5.6% of flaxseed cookies during the storage period of 60 days. This increase was primarily due to packaging material (polythene bags). The packaging was not airtight and lack of temperature control resulted in an increase in moisture contents of cookies.

Moreover, cookies absorbed moisture from surrounding atmosphere due to hygroscopic behavior of wheat flour. An increase in moisture contents of cookies samples during storage has also been reported by Leelavathi and Rao (1993), Rao, *et al.*,(1995) Pasha, *et al.*,(2002),Butt, *et al.*, (2004) and Shariff, *et al.*,(2005) either due to atmosphere or packaging materials. These results indicates that BMGCF₁₀biscuits (90 per cent maida and 10 per cent garden cress seed flour) and

BWGCF₁₀ (90 per cent wheat flour and 10 per cent garden cress seed flour) with constant levels of other ingredients stored at ambient temperature had better acceptability till 90th day. It is evident from all the physicochemical properties that BMGCF₁₀ biscuits (90 per cent maida and 10 per cent garden cress seed flour) and BWGCF₁₀ biscuits also are the best in LDPE than PP for preparation of garden cress seed biscuits of good quality.

References

- A. A. C. C. 2000. Official Methods of Analysis of AACC International, American Association of Cereal Chemists, Washington D.C.
- A. O. A. C. 2000. Offical Methods of Analysis, 18th edition. Association of Official Analytical Chemist. Washignton DC. pp.454.
- Agrawal, S. R. 1990. Prospects for small-scale biscuit industry in the nineties. Indian FoodIndus., 9: 19–21.
- Alistair, S. G. 2005. Postharvest Handling and Preparation of Foods for Processing. In Food Processing Handbook. Edited by James G.B.Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim. pp. 87.
- Amerine, M. A., Pangborn, R. M. and Roessler, E. B. 1980. Principles of Sensory Evaluation of Food. Academic Press. New York. pp. 549.
- Anonymous. 2009. Annual Report of All India Coordinated Research Project, ICAR, New Delhi.
- Barbosa, G. V., Juliano, P. and Peleg, M. 2006. Engineering Properties of Foods, in Food Engineering, (Ed. Gustavo V. Barbosa-Cánovas), in Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK. pp.22.

Bushway, A. A., Belyea, P. R. and Bushway,

- R. J. 1981. Foxtail millet as a source of oil, polysaccharide, and protein. Journal of Food Science. 46: 1349–1350.
- Butt, M. S., Sharif, K., Mukhtar, T. and Rasool, J. 2004. Storage studies of red palm oil fortified cookies. Nutr. Food Sci. 34(6): 272-76.
- Chandan Kumar V. B. Palanimuthu, V. and Madhusudan Nayak, C. 2018. International Journal of Agriculture, Environment and Bioresearch. 3: 2456-8643.
- Coskuner, Y. and Karababa, E. 2007. Physical properties of coriander seeds (*Coriandrum sativum*) Journal of Food Engineering. 80: 408–416.
- Gopalan, C., Ramashastri, B. V. and Balasubramanium, S. C. 2006. Nutritive Value of Indian Foods. National Institute of Nutrition, ICMR, Hyderabad: pp. 47-69.
- Gupta, H. O. and Singh, N. N. 2005. Preparation of wheat and quality protein maize based biscuit and their storage, protein quality and sensory evaluation. J. Food Sci. Technol. 42(1): 43-46.
- James, G. B. 2005. Food Processing Handbook. Edited by James G. B. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim. pp. 27.
- Leelavathi, K. and Rao, P. H. 1993. Development of high fiber biscuits using wheat bran: J. Food Sci. Technol. 30(3): 187-90.
- Mayela, B. J., Denisse, A. C., Ernesto, A. C., Katarzyna, W., Kazimierz, W., Guadalupe, A. G. and Victor, S. G. 2007. Bread development with soybean, chia, linseed, and folic acid as a functional food for woman. Archivos Latino americanos De Nutricion. 57(1): 78-84.
- Mirasaeedghazi, H., Emam-Djomeh, Z. and Mousavi, S. A. 2008. Rheometric

- measurement of dough rheological characteristics and Factor affecting it. Int. J. Agri. Bio. 10: 112-119.
- Muragod P. P.*, N. V. Muruli, Siddarodha Padeppagol and Kattimani A. (2019). Physico-Chemical Properties and Nutritional Factors of Kodo Millets. International Journal of Pure and Applied Bioscience 7 (1): 117-123.
- Mulvancey, F. and Cohen, C. 1997. Effect of added fat on the rheological properties of wheat flour dough. Cereal Chem. 74(2): 304-11.
- Ojeka, E. O. and Ayodele, J. T. 1995. Determination of chromium, copper, lead and nickel in some Nigerian vegetables oils. Spectrum. 2: 75-78.
- Pasha, I., Butt, M. S., Anjum, F. M. and Shehzadi, N. 2002. Effect of dietetic sweeteners on the quality of cookies. International Journal of Agriculture and Biology. 4(2): 245-248.
- Raghuramulu, N., Nair, M. K. and Kalyanasundaram, S. 1993. A Manual of Laboratory Technique, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India. pp. 69-72.
- Rangaswamy, R. 2010. A Text Book of Agricultural Statistics, Second edition and New Age International Publishers. New Delhi: 234-458.
- Rao, T. S., Rajmanuja, M. N., Ashok, N. and Vaibhaker, H. S. 1995. Storage properties of whole egg powder incorporated biscuits. J. Food Sci. Tech. 32(6): 470-76.
- Rey, C. E., Tecantea, A. and Valdivia M. A. 2006. Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican foxtail millet (*Setaria italica* L.) seeds. Food Chemistry. 107(2): 656-663.
- Salazar, V. M., Maira, R., Segura, C., Luis, A. Chel, G. and David, A. 2011. Antihypertensive and antioxidant

- effects of functional foods containing foxtail millet (*Setaria italica*) Protein Hydrolysates. Scientific, Health and Social Aspects of the Food Industry. pp. 382-398.
- Shariff, M., Butt, M. and Huma, N. 2005. Oil extraction from rice industrial waste and its effect on physic-logical characteristics of cookies. Nutr. Food Sci. 35(6): 416-27.
- Sharoon, M., Zafar, I., Atta, M., Arif, M., Rafiq, G and Anjum, R. 2014. Effect of linseed oil substituation on physic-chemical properties of cookies. J. Agric. Res. 52(3): 425-437.
- Shiau, S. Y. and Yeh, A. 2001. Effect of alkali and acid on dough rheological properties and Characteristics of extruded noodles. J. Cereal Sci. 33: 27-37.
- Singh, R., Singh, G. and Chauhan, G. S. 2000. Nutritional evaluation of soy fortified biscuits. J. Food Sci. Technol. 37(2): 162-164.

- Sujitha, R. and Thirumani, D. 2014. Physicochemical and sensory characteristics of value added breakfast biscuits. Int. J. Adv. Res. 2(3): 556-563.
- Ugare, R. 2008. Health benefits, storage quality and value addition of barnyard millet (*Echinochloafrumentacaea* L.) M. H. Sc. Thesis, Univ. Agric. Sci., Dharwad (India).
- Vanesa, Y., Susana, M. and Mabel, C. 2008. Physical properties of foxtail millet (*Setaria italica*.) seeds. Industrial Crops and Products. 28(3): 286-293.
- Veena, B., Chimmad, B. V. Naik, R. K. and Shantakumar, G. 2005. Physicochemical and nutritional studies in barnyard millet. Karnataka J. Agric. Sci., 18 (1): 101-105.
- Vilche, C., Gely, M. and Santalla, E. 2003. Physical properties of quinoa seeds. Biosystemic Engineering. 86(2): 59–65.

www.biscuitfederation.org, 2009.